Equilibration during mantle melting: a fractal tree model.
نویسنده
چکیده
Many basalts from oceanic islands, ridges, and arcs show strong trace element evidence for melting at great depths, where garnet is a stable phase in mantle peridotites. If partial melts ascend to the surface by porous (intergranular) flow processes, the high-pressure garnet signature will be obliterated by diffusive reequilibration at shallower depths in the mantle. Spiegelman and Kenyon [Spiegelman, M. & Kenyon, P. (1992) Earth Planet Sci. Lett. 109, 611-620] argued that partial melts must therefore be focused into a coarser transport network, for high-speed delivery to the surface. Numerous natural network systems, such as rivers and the human vascular and bronchial systems, have fractal structures that are optimal for minimizing energy expenditure during material transport. I show here that a fractal magma "tree" with these optimal properties provides a network in which magma rapidly loses diffusive chemical "contact" with its host matrix. In this fractal network, magma conduits combine by twos, with the radius and flow velocities scaling as (2)n/3, where n is the generation number. For reasonable values of volume diffusivities, viscosities, and aspect ratios, melts will experience only limited diffusive reequilibration once they have traveled some hundreds of meters from their source. Melts thus represent rather local mantle domains, and there is little problem in delivering melts with deep (<100 km) geochemical signatures to the surface.
منابع مشابه
Impact-induced melting during accretion of the Earth
Because of the high energies involved, giant impacts that occur during planetary accretion cause large degrees of melting. The depth of melting in the target body after each collision determines the pressure and temperature conditions of metal-silicate equilibration and thus geochemical fractionation that results from core-mantle differentiation. The accretional collisions involved in forming t...
متن کاملDehydration and partial melting in subduction zones: Constraints from U-series disequilibria
We present a critical reappraisal of U-series data from arc volcanoes to constrain slab dehydration and melting processes using a global subduction zone data set. There is no clear evidence for significant mobilization of Th or Pa in dehydration fluids while the source region of arc rocks is relatively oxidized and mobility of U is strongly enhanced. It is argued that along-arc U/Th and U/Pa is...
متن کاملComments on Some Misconceptions in Igneous and Experimental Petrology and Methodology: a Reply
rate’ of cpx and opx. Isobaric melting experiments show INTRODUCTION a > b, but the abyssal peridotite data suggest b > a, i.e. I recently showed (Niu, 1997) that proportions of residual opx would contribute more than cpx to the melt during minerals in abyssal peridotites (e.g. Dick, 1989; Johnson melting beneath ocean ridges. As abyssal peridotites et al., 1990; Johnson & Dick, 1992) exhibit s...
متن کاملTime-scales of magma formation, ascent and storage beneath subduction-zone volcanoes
There is now su ̄ cient information to attempt an integrated model for melt generation, transfer and storage beneath subduction-zone volcanoes. Fluid release from the subducting oceanic crust into the mantle wedge may occur over a period ranging from a few hundred kyr, to as little as less than 1 kyr, before eruption. This supports models in which ®uid addition is closely linked to partial melti...
متن کاملNot so hot "hot spots" in the oceanic mantle.
Excess volcanism and crustal swelling associated with hot spots are generally attributed to thermal plumes upwelling from the mantle. This concept has been tested in the portion of the Mid-Atlantic Ridge between 34 degrees and 45 degrees (Azores hot spot). Peridotite and basalt data indicate that the upper mantle in the hot spot has undergone a high degree of melting relative to the mantle else...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 90 24 شماره
صفحات -
تاریخ انتشار 1993